Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Cell Biol ; 25(4): 550-564, 2023 04.
Article in English | MEDLINE | ID: covidwho-2260687

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although SARS-CoV-2 was reported to alter several cellular pathways, its impact on DNA integrity and the mechanisms involved remain unknown. Here we show that SARS-CoV-2 causes DNA damage and elicits an altered DNA damage response. Mechanistically, SARS-CoV-2 proteins ORF6 and NSP13 cause degradation of the DNA damage response kinase CHK1 through proteasome and autophagy, respectively. CHK1 loss leads to deoxynucleoside triphosphate (dNTP) shortage, causing impaired S-phase progression, DNA damage, pro-inflammatory pathways activation and cellular senescence. Supplementation of deoxynucleosides reduces that. Furthermore, SARS-CoV-2 N-protein impairs 53BP1 focal recruitment by interfering with damage-induced long non-coding RNAs, thus reducing DNA repair. Key observations are recapitulated in SARS-CoV-2-infected mice and patients with COVID-19. We propose that SARS-CoV-2, by boosting ribonucleoside triphosphate levels to promote its replication at the expense of dNTPs and by hijacking damage-induced long non-coding RNAs' biology, threatens genome integrity and causes altered DNA damage response activation, induction of inflammation and cellular senescence.


Subject(s)
COVID-19 , Animals , Mice , SARS-CoV-2 , Cellular Senescence , DNA Damage
2.
Pathol Res Pract ; 231: 153796, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1665390

ABSTRACT

This case report describes a fatal case of a young woman with superior sagittal, transverse and sigmoid sinus thrombosis after administration of the ChAdOx1 nCov-19 vaccination. Eleven days post-vaccination she was found unconscious and transferred to the Emergency Department. Blood parameters showed low platelets, and a CT scan showed an extensive left intracranial hemorrhage and the presence of an occlusive thrombus of the superior sagittal sinus. She under-went a craniectomy, but after the intervention, she remained in a comatose state. After a few days, her clinical conditions worsened, and she died. A complete autopsy was performed which showed a thrombosis of the cerebral venous district, of the upper and lower limbs. A blood sample was also performed to carry out a gene study about the predisposition to thrombosis. The organ samples were studied through light microscope both in hematoxylin-eosin and immunohistochemical examination, and showed a strong inflammatory response in all samples and at the site of thrombosis. Our study aims to provide a proper autopsy technique to study the entire cerebral venous system through a multidisciplinary approach (anatomical dissection and neurosurgery) in post-vaccine venous thrombosis.


Subject(s)
ChAdOx1 nCoV-19/adverse effects , Sinus Thrombosis, Intracranial/etiology , Thrombocytopenia/etiology , Adult , COVID-19/prevention & control , Fatal Outcome , Female , Humans
3.
Life (Basel) ; 12(1)2022 Jan 04.
Article in English | MEDLINE | ID: covidwho-1613887

ABSTRACT

In consideration of the increasing prevalence of COVID-19 cases in several countries and the resulting demand for unbiased sequencing approaches, we performed a direct RNA sequencing (direct RNA seq.) experiment using critical oropharyngeal swab samples collected from Italian patients infected with SARS-CoV-2 from the Palermo region in Sicily. Here, we identified the sequences SARS-CoV-2 directly in RNA extracted from critical samples using the Oxford Nanopore MinION technology without prior cDNA retrotranscription. Using an appropriate bioinformatics pipeline, we could identify mutations in the nucleocapsid (N) gene, which have been reported previously in studies conducted in other countries. In conclusion, to the best of our knowledge, the technique used in this study has not been used for SARS-CoV-2 detection previously owing to the difficulties in the extraction of RNA of sufficient quantity and quality from routine oropharyngeal swabs. Despite these limitations, this approach provides the advantages of true native RNA sequencing and does not include amplification steps that could introduce systematic errors. This study can provide novel information relevant to the current strategies adopted in SARS-CoV-2 next-generation sequencing.

4.
EMBO Rep ; 23(2): e53658, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1547826

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19), known to be more common in the elderly, who also show more severe symptoms and are at higher risk of hospitalization and death. Here, we show that the expression of the angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 cell receptor, increases during aging in mouse and human lungs. ACE2 expression increases upon telomere shortening or dysfunction in both cultured mammalian cells and in vivo in mice. This increase is controlled at the transcriptional level, and Ace2 promoter activity is DNA damage response (DDR)-dependent. Both pharmacological global DDR inhibition of ATM kinase activity and selective telomeric DDR inhibition by the use of antisense oligonucleotides prevent Ace2 upregulation following telomere damage in cultured cells and in mice. We propose that during aging telomere dysfunction due to telomeric shortening or damage triggers DDR activation and this causes the upregulation of ACE2, the SARS-CoV-2 cell receptor, thus contributing to make the elderly more susceptible to the infection.


Subject(s)
Aging , Angiotensin-Converting Enzyme 2/genetics , COVID-19 , DNA Damage , Telomere , Aged , Aging/genetics , Animals , Humans , Mice , SARS-CoV-2 , Telomere/genetics
5.
Pediatr Dermatol ; 38(5): 1185-1190, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1379597

ABSTRACT

We observed ten children with a papular eruption with purpuric features during the SARS-CoV-2 pandemic in Northern Italy (May-December 2020). Histological examination showed signs of SARS-CoV-2-related dermatosis. Evidence of nucleocapsid viral proteins using SARS-CoV-2 (2019-nCoV) nucleocapsid antibody revealed cuticular staining of the deep portion of the eccrine glands in all cases.


Subject(s)
COVID-19 , Dermatitis , Purpura , Humans , Pandemics , Purpura/etiology , SARS-CoV-2
6.
Diagnostics (Basel) ; 11(6)2021 May 26.
Article in English | MEDLINE | ID: covidwho-1243964

ABSTRACT

The current challenge worldwide is the administration of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines. Even if rarely, severe vascular adverse reactions temporally related to vaccine administration have induced diffidence in the population at large. In particular, researchers worldwide are focusing on the so-called "thrombosis and thrombocytopenia after COVID-19 vaccination". This study aims to establish a practical workflow to define the relationship between adverse events following immunization (AEFI) and COVID-19 vaccination, following the basic framework of the World Health Organization (WHO). Post-mortem investigation plays a pivotal role to support this causality relationship when death occurs. To demonstrate the usefulness and feasibility of the proposed workflow, we applied it to two exemplificative cases of suspected AEFI following COVID-19 vaccination. Based on the proposed model, we took into consideration any possible causality relationship between COVID-19 vaccine administration and AEFI. This led us to conclude that vaccination with ChAdOx1 nCov-19 may cause the rare development of immune thrombocytopenia mediated by platelet-activating antibodies against platelet factor 4 (PF4), which clinically mimics heparin-induced autoimmune thrombocytopenia. We suggest the adoption of the proposed methodology in order to confirm or rule out a causal relationship between vaccination and the occurrence of AEFI.

7.
EBioMedicine ; 59: 102951, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-716659

ABSTRACT

BACKGROUND: . The occurrence of trans-placental transmission of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection remains highly debated. Placental positivity for SARS-CoV-2 has been reported in selected cases, but infection or virus-associated disease of fetal tissues or newborns remains to be demonstrated. METHODS: We screened for SARS-CoV-2 spike (S) protein expression placentas from 101 women who delivered between February 7 and May 15, 2020, including 15 tested positive for SARS-CoV-2 RNA, 34 tested negative, and 52 not evaluated as they did not meet testing criteria (32), or delivered before COVID-19 pandemic declaration (20). Immunostain for SARS-CoV-2 nucleocapsid (N) was performed in the placentas of all COVID-19 positive women. One placenta resulted positive for the SARS-CoV-2 S and N proteins, which was further studied by RNA-in situ hybridization and RT-PCR for S transcripts, and by electron microscopy. A comprehensive immunohistochemical and immunofluorescence analysis of the placental inflammatory infiltrate completed the investigations. FINDINGS: SARS-CoV-2 S and N proteins were strongly expressed in the placenta of a COVID-19 pregnant woman whose newborn tested positive for viral RNA and developed COVID-19 pneumonia soon after birth. SARS-CoV-2 antigens, RNA and/or particles morphologically consistent with coronavirus were identified in villous syncytiotrophoblast, endothelial cells, fibroblasts, in maternal macrophages, and in Hofbauer cells and fetal intravascular mononuclear cells. The placenta intervillous inflammatory infiltrate consisted of neutrophils and monocyte-macrophages expressing activation markers. Absence of villitis was associated with an increase in the number of Hofbauer cells, which expressed PD-L1. Scattered neutrophil extracellular traps (NETs) were identified by immunofluorescence. INTERPRETATION: We provide first-time evidence for maternal-fetal transmission of SARS-CoV-2, likely propagated by circulating virus-infected fetal mononuclear cells. Placenta infection was associated with recruitment of maternal inflammatory cells in the intervillous space, without villitis. PD-L1 expression in syncytiotrophoblast and Hofbaeur cells, together with limited production of NETs, may have prevented immune cell-driven placental damage, ensuring sufficient maternal-fetus nutrient exchanges.


Subject(s)
Coronavirus Infections/transmission , Placenta/virology , Pneumonia, Viral/transmission , Adult , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Extracellular Traps/metabolism , Female , Humans , Immunohistochemistry , Infant, Newborn , Macrophages/virology , Microscopy, Electron , Nasopharynx/virology , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Pandemics , Phosphoproteins , Placenta/cytology , Placenta/pathology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Pregnancy , RNA, Viral/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL